These research studies below are on molecular hydrogen highlight its potential therapeutic benefits across various bone-related conditions. Studies have shown that hydrogen treatment can protect bone health by alleviating cell injury in osteoblasts and preventing osteopenia in ovariectomized rats. Additionally, hydrogen water has been found to mitigate disuse muscle atrophy in the gastrocnemius muscle, indicating potential benefits for muscle preservation. Furthermore, molecular hydrogen exhibits protective effects on cartilage by shielding chondrocytes from oxidative stress and modulating gene expressions. In terms of inflammation, hydrogen has shown promise in inhibiting nitric oxide production in macrophages, suggesting anti-inflammatory properties. Moreover, hydrogen has been linked to promoting tissue healing by enhancing angiogenesis in a corneal alkali-burn model. These findings collectively suggest that molecular hydrogen may serve as a versatile therapeutic agent with implications for bone health, muscle preservation, cartilage protection, inflammation reduction, and tissue repair.
22.Cai, W.W., et al., Treatment with hydrogen molecule alleviates TNFalpha-induced cell injury in osteoblast. Mol Cell Biochem, 2013. 373(1-2): p. 1-9.
23.Fujita, R., et al., Effect of molecular hydrogen saturated alkaline electrolyzed water on disuse muscle atrophy in gastrocnemius muscle. Journal of Physiological Anthropology, 2011. 30(5): p. 195-201.
24.Guo, J.D., et al., Hydrogen water consumption prevents osteopenia in ovariectomized rats. Br J Pharmacol, 2013. 168(6): p. 1412-20.
25.Hanaoka, T., et al., Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Medical Gas Research, 2011. 1(1): p. 18.
26.Itoh, T., et al., Molecular hydrogen inhibits lipopolysaccharide/interferon gamma-induced nitric oxide production through modulation of signal transduction in macrophages. Biochemical and Biophysical Research Communications, 2011. 411(1): p. 143-9.
27.Kawasaki, H., J.J. Guan, and K. Tamama, Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochemical and Biophysical Research Communications, 2010. 397(3): p. 608-613.
28.Kubota, M., et al., Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Ophthalmology and Visual Science, 2011. 52(1): p. 427-33.
29.Lekic, T., et al., Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl, 2011. 111: p. 237-41.
30.Li, D.Z., et al., Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. J Bone Miner Metab, 2013.
31.Sun, Y., et al., Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats. Osteoporos Int, 2013. 24(3): p. 969-78.
32.Takeuchi, S., et al., Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo study. Internal Medicine, 2012. 51(11): p. 1309-13.
33.Xu, Z., et al., Anti-inflammation effects of hydrogen saline in LPS activated macrophages and carrageenan induced paw oedema. J Inflamm (Lond), 2012. 9: p. 2.
34.Yuan, L., et al., Administration of hydrogen-rich saline in mice with allogeneic hematopoietic stem-cell transplantation. Med Sci Monit, 2015. 21: p. 749-54.
Li, J., et al., Protective effects of molecular hydrogen on steroid-induced osteonecrosis in rabbits via reducing oxidative stress and apoptosis. BMC Musculoskelet Disord, 2017. 18(1): p. 58.
Guo, J., et al., Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin. Int Orthop, 2017. 41(10): p. 2119-2128.
Yamada, T., et al., Hydrogen supplementation of preservation solution improves viability of osteochondral grafts. ScientificWorldJournal, 2014. 2014: p. 109876.
Wan, W.L., et al., An In Situ Depot for Continuous Evolution of Gaseous H2 Mediated by a Magnesium Passivation/Activation Cycle for Treating Osteoarthritis. Angew Chem Int Ed Engl, 2018.
Ostojic, S.M., et al., Effectiveness of oral and topical hydrogen for sports-related soft tissue injuries. Postgrad Med, 2014. 126(5): p. 187-95.
Sun, Y., et al., Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats. Osteoporos Int, 2013. 24(3): p. 969-78.
Li, D.Z., et al., Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. J Bone Miner Metab, 2013.
Guo, J.D., et al., Hydrogen water consumption prevents osteopenia in ovariectomized rats. Br J Pharmacol, 2013. 168(6): p. 1412-20.
Cai, W.W., et al., Treatment with hydrogen molecule alleviates TNFalpha-induced cell injury in osteoblast. Mol Cell Biochem, 2013. 373(1-2): p. 1-9.
Xu, Z., et al., Anti-inflammation effects of hydrogen saline in LPS activated macrophages and carrageenan induced paw oedema. J Inflamm (Lond), 2012. 9: p. 2.
Takeuchi, S., et al., Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo study. Internal Medicine, 2012. 51(11): p. 1309-13.
Lekic, T., et al., Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats.. Acta Neurochir Suppl, 2011. 111: p. 237-41.
Kubota, M., et al., Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Ophthalmology and Visual Science, 2011. 52(1): p. 427-33.
Itoh, T., et al., Molecular hydrogen inhibits lipopolysaccharide/interferon gamma-induced nitric oxide production through modulation of signal transduction in macrophages. Biochemical and Biophysical Research Communications, 2011. 411(1): p. 143-9.
Hanaoka, T., et al., Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Medical Gas Research, 2011. 1(1): p. 18.
Kawasaki, H., J.J. Guan, and K. Tamama, Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochemical and Biophysical Research Communications, 2010. 397(3): p. 608-613.